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The phenomena of natural convection in a trapezoidal enclosure filled with porous matrix has been stud-
ied numerically. A penalty finite element analysis with bi-quadratic elements is performed to investigate
the influence of uniform and non-uniform heating of bottom wall while two vertical walls are maintained
at constant cold temperature and the top wall is well insulated. Parametric study for the wide range of
Rayleigh number Ra ð103

6 Ra 6 105Þ, Prandtl number Pr ð0:015 6 Pr 6 1000Þ and Darcy number
ð10�3

6 Da 6 10�5Þ shows consistent performance of the present numerical approach to obtain the solu-
tions in terms of stream function and isotherm contours. For parameters studied in the above range, a
symmetry is observed for temperature and flow simulations. Non-uniform heating of the bottom wall
produces greater heat transfer rate at the center of the bottom wall than uniform heating case for all Ray-
leigh and Darcy numbers but average Nusselt number shows overall lower heat transfer rate for non-uni-
form heating case. It is observed that the conduction is dominant irrespective of Ra for Da ¼ 10�5. As
Rayleigh number increases, there is a change from conduction dominant region to convection dominant
region for Da ¼ 10�3. The correlations between average Nusselt number and three parameters (Rayleigh
number (Ra), Prandtl number (Pr) and Darcy number (Da)) are also obtained.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in a closed cavity is important in many engi-
neering applications. Most of the commonly used enclosures in
industries are cylindrical, triangular, rectangular and trapezoidal
etc. Buoyancy driven phenomena in enclosures filled with porous
medium are actively under investigation for several years. Non-
Darcy effects on natural convection in porous media have received
significant attention in recent years. This is due to the large num-
ber of technical applications such as thermal insulating system,
separation process in chemical industries, dispersion of chemical
contaminants through water saturated soil, solidification of cast-
ing, migration of moisture in grain storage system, crude oil pro-
duction etc. As a result, this subject has been studied in diverse
areas of meteorology, geophysics, energy storage, fire control,
greenhouses, solar distillers, growth of crystals in liquids etc. [1–9].

Earlier studies on the convection patterns in various enclosures
filled with a porous media are reported in literature by Bejan and
Poulikakos [10], Nield and Bejan [11], Ingham and Pop [12] and
Poulikakos et al. [13]. The buoyancy driven convection in a differ-
entially heated porous cavity has been analyzed by Walker and
ll rights reserved.
Homsy [14] with a number of different techniques. Tong and Subr-
amanian [15] and Lauriat and Prasad [16] further considered Brink-
man-extended Darcy model to examine the buoyancy effects on
free convection in vertical cavity. This model has been introduced
by Brinkman [17] in order to account for the transition from Darcy
flow to highly viscous flow, in the limit of high permeability. How-
ever, this model does not provide adequate description for the
transition from the porous medium flow to pure fluid flow for por-
ous medium with high permeability. A model that bridges the gap
between the Darcy and Navier Stokes equations is the Darcy–
Forchheimer model [18]. In addition, Darcy–Forchheimer model
also describes the effect of inertia and viscous forces in the porous
media and was used by Poulikakos and Bejan [19], Lauriat and Pra-
sad [20] to investigate the natural convection in a vertical enclo-
sure filled with a porous medium.

A recent investigation includes the effect of viscous dissipation
for Darcy model as studied by Saeid and Pop [21]. Their study
shows that the viscous dissipation effect reduces the heat transfer
rate and the average Nusselt number in porous cavity decreases
with the increase of the viscous dissipation parameter. In another
recent investigation Basak et al. [22] studied numerically the nat-
ural convection flows in a square cavity filled with a porous matrix
for various boundary conditions and wide range of parameters.
They found that non-uniform heating of the bottom wall produces
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Nomenclature

Da Darcy number
g acceleration due to gravity, m s�2

k thermal conductivity, W m�1 K�1

H height of the trapezoidal cavity, m
Nu local Nusselt number
p pressure, Pa
P dimensionless pressure
Pr Prandtl number
R Residual of weak form
Ra Rayleigh number
T temperature, K
Th temperature of hot bottom wall, K
Tc temperature of cold inclined wall, K
u x component of velocity
U x component of dimensionless velocity
v y component of velocity
V y component of dimensionless velocity
X dimensionless distance along x coordinate
Y dimensionless distance along y coordinate

Greek symbols
a thermal diffusivity, m2 s�1

b volume expansion coefficient, K�1

c penalty parameter
h dimensionless temperature
m kinematic viscosity, m2 s�1

q density, kg m�3

u inclination of side wall with vertical line
U basis functions
w stream function
n horizontal coordinate in a unit square
g vertical coordinate in a unit square

Subscripts
b bottom wall
l left wall
r right wall
s side wall
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greater heat transfer rate at the center of the bottom wall than
uniform heating case for all Rayleigh numbers (Ra), but average
Nusselt numbers (Nu) show overall lower heat transfer rates for
non-uniform heating case.

An earlier study on natural convection on trapezoidal porous
enclosure has been carried out by Baytas and Pop [23]. They solved
the problem by finite-difference method with boundary conditions
as top enclosure being cooled, bottom cylindrical surfaces being
heated and the remaining two non-parallel plane sidewalls of
enclosure being adiabatic. Although their study deals with heat
transfer studies on various application in trapezoidal porous
spaces, a comprehensive analysis on heat transfer and flow circula-
tions is yet to appear in literature.

The aim of the present paper is to provide a complete under-
standing about the problem, solution procedure and detailed anal-
ysis of the temperature and the flow fields on heat transfer
evaluation for various materials. The geometry of trapezoidal
enclosure with boundary conditions is shown in Fig. 1. The
Darcy–Forchheimer model without the Forchheimer’s inertia term
has been adopted. In the current study, we have used Galerkin fi-
nite element method with penalty parameter to solve the nonlin-
ear coupled partial differential equations governing flow and
temperature fields for both uniform and sinusoidally varying tem-
g
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Fig. 1. Schematic diagram of the physical system.
perature distribution prescribed at the walls. Non-orthogonal grid
generation has been done with iso-parametric mapping [24,25].
The complete explanation about grid generation using iso-para-
metric mapping is given in Appendix A. Numerical results are ob-
tained to display the circulations and temperature distributions
within the trapezoidal enclosure and the heat transfer rate for
the bottom and side walls in terms of local and average Nusselt
numbers.
2. Governing equations

Consider a fluid saturated porous medium enclosed in a trape-
zoidal cavity. It is assumed that the bottom wall is heated either
uniformly or non-uniformly while the top wall is well insulated.
The vertical walls are assumed to be cooled to a constant temper-
ature. The physical domain is shown in Fig. 1. Thermophysical
properties of the fluid in the flow field are assumed to be constant
except the density variations causing a body force term in the
momentum equation. The Boussinesq approximation is invoked
for the fluid properties assuming the variation of density with tem-
perature and to couple in this way the temperature field to the
flow field. Further, it is assumed that the temperature of the fluid
phase is equal to the temperature of the solid phase in the porous
region and local thermal equilibrium (LTE) is applicable in the
present investigation [11]. Also, a velocity square term could be
incorporated in the momentum equations to model the inertia ef-
fect which is more important for non-Darcy effect on the convec-
tive boundary layer flow over the surface of a body embedded in
a high porosity media. However, this term has been neglected in
the present study as the current study involves the natural convec-
tion flow in a cavity filled with a porous medium. Under these
assumptions and following the earlier works ([18,26]) with the
Forchheimer’s inertia term neglected, the dimensionless form of
governing equations for steady two-dimensional natural convec-
tion flow in the porous cavity using conservation of mass, momen-
tum and energy can be written as:
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Here X and Y are dimensionless coordinates varying along horizon-
tal and vertical directions, respectively; U and V are dimensionless
velocity components in the X and Y directions, respectively; h is
the dimensionless temperature; P is the dimensionless pressure;
Da, Ra and Pr are Darcy, Rayleigh and Prandtl numbers, respectively.

The dimensionless form of boundary conditions are:

U ¼ 0; V ¼ 0; h¼ 1;orh¼ sinðpXÞ; 8Y ¼ 0; 06 X 6 1
U ¼ 0; V ¼ 0; h¼ 0; 8X cosðuÞ þ Y sinðuÞ ¼ 0; 06 Y 6 1
U ¼ 0; V ¼ 0; h¼ 0; 8X cosðuÞ � Y sinðuÞ ¼ cosðuÞ; 06 Y 6 1

U ¼ 0; V ¼ 0;
oh
oY
¼ 0; 8Y ¼ 1; � tanðuÞ6 X 6 1þ tanðuÞ: ð6Þ
3. Solution procedure

The momentum and energy balance equations [Eqs. (2)–(4)] are
solved using the Galerkin finite element method. The continuity
equation [Eq. (1)] has been used as a constraint due to mass con-
servation and this constraint may be used to obtain the pressure
distribution. In order to solve Eqs. (2) and (3), we use the penalty
finite element method where the pressure P is eliminated by a pen-
alty parameter c and the incompressibility criteria given by Eq. (1)
results in

P ¼ �c
oU
oX
þ oV

oY

� �
: ð7Þ

The continuity equation [Eq. (1)] is automatically satisfied for large
values of c. Typical values of c that yield consistent solutions are
107. Using Eq. (7), the momentum balance equations [Eqs. (2) and
(3)] reduce to
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The system of equations [Eqs. (4), (8) and (9)] with boundary con-
ditions [Eq. (6)] are solved by using Galerkin finite element method
[24]. Since the solution procedure is explained in an earlier work
[22], the detailed description is not included in this paper. The
numerical solutions are obtained in terms of the velocity compo-
nents (U, V) and stream function ðwÞ is evaluated using the relation-
ship between the stream function ðwÞ and the velocity components
[27], where the stream function ðwÞ is defined in the usual way as
U ¼ ow

oY and V ¼ � ow
oX. It may be noted that, the positive sign of w de-

notes anti-clockwise circulation and the clockwise circulation is
represented by the negative sign of w. The no-slip condition is valid
at all boundaries as there is no cross flow, hence w ¼ 0 is used for
the boundaries. For steady flows, stream lines are equivalent to
the paths followed by the individual particles in the fluid.
The heat transfer coefficient in terms of the local Nusselt num-
ber (Nu) is defined by

Nu ¼ � oh
on
; ð10Þ

where n denotes the normal direction on a plane. The local Nusselt
numbers at bottom wall ðNubÞ, left wall ðNulÞ and right wall ðNurÞ
are defined as
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The average Nusselt numbers at the bottom, left and right walls are

Nub ¼
R 1

0 NubdX

Xj10
¼
Z 1

0
NubdX; ð14Þ

Nul ¼ cos u
Z 1

cos u

0
Nulds1; ð15Þ

and

Nur ¼ cos u
Z 1

cos u

0
Nurds2; ð16Þ

where ds1, ds2 is the small elemental length along the left and right
walls, respectively.

4. Results and discussion

4.1. Numerical tests

The trapezoidal enclosure with u ¼ 30� (Fig. 1) has been consid-
ered for simulation studies. The computational domain consists of
20 � 20 bi-quadratic elements which correspond to 41 � 41 grid
points in n–g domain as seen in Fig. 2. The bi-quadratic elements
with lesser number of nodes smoothly capture the non-linear vari-
ations of the field variables which are in contrast with finite-differ-
ence solution available in the literature [23]. In order to assess the
accuracy of the numerical procedure, we have benchmarked our
algorithm based on the grid size for the fluid filled trapezoidal cav-
ity [28]. Also, the result is in well agreement with an earlier work
[20] for porous square enclosure with heated side wall.

Numerical solutions are obtained for various values of Ra = 103–
105 , Pr = 0.015–1000 and Da = 10�5–10�3 with uniform and non-
uniform heating of the bottom wall whereas two vertical walls
are cooled and the top wall is well insulated. The jump discontinu-
ity in Dirichlet type of wall boundary conditions at the corner point
(see Fig. 1) corresponds to computational singularity. To ensure the
convergence of the numerical solution to the exact solution, the
grid sizes have been optimized and the results presented here
are independent of grid sizes. In particular, the singularity at the
corner nodes of the bottom wall needs special attention. The grid
size dependent effect of the temperature discontinuity at the cor-
ner points upon the local (and the overall) Nusselt numbers tend
to increase as the mesh spacing at the corner is reduced. One of
the ways for handling the problem is assuming the average tem-
perature of the two walls at the corner and keeping the adjacent
grid-nodes at the respective wall temperatures. Alternatively,
based on earlier work by Ganzarolli and Milanez [29], this proce-
dure is still grid dependent unless a sufficiently refined mesh is
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implemented. Accordingly, once any corner formed by the inter-
section of two differently heated boundary walls is assumed at
the average temperature of the adjacent walls, the optimal grid
size obtained for each configuration corresponds to the mesh spac-
ing over which further grid refinements lead to grid invariant re-
sults in both heat transfer rates and flow fields.

In the current investigation, Gaussian quadrature based finite
element method provides the smooth solutions at the interior do-
main including the corner regions as evaluation of residual de-
pends on interior Gauss points and thus the effect of corner
nodes is less pronounced in the final solution. The present finite
element approach offers special advantage on evaluation of local
Nusselt number at the bottom and side walls as the element basis
functions are used to evaluate the heat flux.

4.2. Isotherms and streamlines: Uniform heating at bottom wall

Figs. 3–7 illustrate the stream function and isotherm contours
for various Ra = 103–105, Da = 10�5–10�3 and Pr = 0.015–1000
when the bottom wall is uniformly heated and the side walls are
cooled while the top wall is well insulated. Due to the hot bottom
wall, the fluid near to that wall is hotter than the fluid near to cold
wall and hence fluid near to hot bottom wall have lower density
than that near to the vertical wall. As a result, fluids rise up from
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Fig. 3. Contour plots for uniform bottom heating, hðX; 0Þ ¼ 1, with Pr = 0.7, Ra = 105 and
signs of stream function, respectively.
middle portion of the bottom wall and flow down along the two
vertical walls forming two symmetric rolls with clockwise and
anticlockwise rotations inside the cavity. Results indicate that the
streamlines and isotherms are strongly dependent on Darcy num-
ber as seen in Figs. 3–5.

Fig. 3 displays the temperature and stream function contours
for Da ¼ 10�5, Pr ¼ 0:7 and Ra ¼ 105. In this case, the flow is seen
to be very weak as the maximum value of stream function is found
to be 0.032. The temperature contours are smooth and monotonic
which illustrate that heat transfer is purely due to conduction. The
convection starts playing a dominant role for Da ¼ 10�4 with
Ra ¼ 105 and Pr ¼ 0:7 (see Fig. 4). A slightly stronger convection
pushes the isotherms towards the walls. It is observed that the
contours with h 6 0:3 are pushed towards cold vertical wall
whereas h P 0:4 contours are continuous curves. It is interesting
to observe that the maximum value of stream function is 0.32 as
seen from Fig. 4.

As Da increases to 10�3, the strength of the circulation increases
(see Fig. 5). The critical Rayleigh number for the conduction dom-
inant mode is found as Ra ¼ 8� 103 for Da ¼ 10�3 and Pr ¼ 0:7, i.e.,
conduction is dominant below critical Ra. The value of critical Ra
has been obtained from asymptotes of average Nusselt number
vs. Rayleigh number plot as discussed later. It is observed that,
the flow is strongly dependent on Ra for Da ¼ 10�3. For
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Da = 10�5. Clockwise and anti-clockwise flows are shown via negative and positive



0.4

0.6

0.8

0.
3

0.1 0.3 0.
1

TEMPERATURE, θ

0.05 –0.05
0.13 –0.13

0.24 –0.24

0.32

–0
.3

2

STREAM FUNCTION, ψ

Fig. 4. Contour plots for uniform bottom heating, hðX; 0Þ ¼ 1, with Pr = 0.7, Ra = 105 and Da = 10�4. Clockwise and anti-clockwise flows are shown via negative and positive
signs of stream function, respectively.

0.7

0.9

0.6 0.
60.40.2 0.

20.
4

TEMPERATURE, θ

0.5 –0.51.4 –1.4

3.3 –3.3

2.5 –2.5

STREAM FUNCTION, ψ

Fig. 5. Contour plots for uniform bottom heating, hðX; 0Þ ¼ 1, with Pr = 0.7, Ra = 105 and Da = 10�3. Clockwise and anti-clockwise flows are shown via negative and positive
signs of stream function, respectively.

0.
6

0.8
0.5 0.

5

0.3
0.1

0.
1

0.
3

TEMPERATURE, θ

0.5

1.
3

–0.5

–1
.3

3.2 –3.2

2.4

–2.4

STREAM FUNCTION, ψ

Fig. 6. Contour plots for uniform bottom heating, hðX;0Þ ¼ 1, with Pr = 0.015, Ra = 105 and Da = 10�3. Clockwise and anti-clockwise flows are shown via negative and positive
signs of stream function, respectively.

0.
7

0.9

0.6 0.
6

0.4 0.
4

0.2 0.
2

TEMPERATURE, θ

0.5

–0.5

1.
4

–1
.4

3.6 –3.6

2.6 –2.6

STREAM FUNCTION, ψ

Fig. 7. Contour plots for uniform bottom heating, hðX;0Þ ¼ 1, with Pr = 1000, Ra = 105 and Da = 10�3. Clockwise and anti-clockwise flows are shown via negative and positive
signs of stream function, respectively.

74 T. Basak et al. / International Journal of Heat and Mass Transfer 52 (2009) 70–78
Da ¼ 10�3 and Ra ¼ 105, the circulation near the central regimes
are stronger and consequently, the temperature contours with
h 6 0:6 start getting shifted towards the side walls and they break
into two symmetric contour lines (see Fig. 5). The presence of sig-
nificant convection is also exhibited in temperature contour lines
which start getting deformed and pushed towards the side walls.
The intensity of circulation is greater near the center and least near
the walls due to no slip conditions. The greater circulation in each
half of the box follows a progressive wrapping around the centers
of rotation, and a more and more pronounced compression of iso-
therms towards the boundary surfaces of the enclosures occurs.
Consequently, near the central core at the top half of the enclosure,
there are small gradients in temperature whereas a large stratifica-
tion zone of temperature is observed at the vertical symmetric line
near the bottom wall. Fig. 6 shows that intensity of stream function
and isotherms in a core cavity decreases for Pr ¼ 0:015. Due to less
circulation, the zone of stratification of temperature at the central
symmetric line is increased. In contrast, due to greater circulation
at Pr = 1000 (Fig. 7), the zone of stratification of temperature at the
central symmetric lines is reduced. Similar to previous cases, the
isotherms are pushed along the vertical walls due to enhanced cir-
culations in the central regime at higher Ra for Da ¼ 10�3.

4.3. Isotherms and streamlines: Non-uniform heating at bottom wall

Streamlines and isotherms are displayed in Figs. 8–10 for
Ra ¼ 105, Da ¼ 10�3 corresponding to Pr = 0.7, 0.015 and 1000,
respectively, when the bottom wall is non-uniformly heated via
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sinusoidal function. As seen in Figs. 3–7, uniform heating of bottom
wall causes a finite discontinuity in Dirichlet type of boundary con-
ditions for the temperature distribution at both edges of the bot-
tom wall. In contrast, the non-uniform heating removes the
singularity at the edges of bottom wall and provides a smooth tem-
perature distribution in the entire enclosure. For Da ¼ 10�5 and
Pr ¼ 0:7, the isotherms (figure not shown) are similar to that with
uniform heating case as seen in Fig. 3. The heat transfer is primarily
due to the conduction and similar phenomenon was observed with
uniform heating case. It is interesting to note that, the temperature
at the bottom wall is non-uniform and maxima in temperature oc-
curs at the center. Therefore the greater heat transfer rate will oc-
cur at the center and the detailed analysis will be illustrated in the
following section.

At Da ¼ 10�3, Pr ¼ 0:7 and Ra ¼ 105 the circulation pattern is
qualitatively similar to the uniform heating case with the identical
situation (see Fig. 8). Due to non-uniform bottom heating, the heat-
ing rate is generally lower and that induces less buoyancy effect.
The critical value of Rayleigh number for conduction dominant
heat transfer corresponding to Da ¼ 10�3 and Pr ¼ 0:7 is upto
Ra ¼ 5� 103 which is less than for uniform heating case which cor-
responds to critical Ra ¼ 8� 103. Further compared to uniform
heating case, the magnitude of isotherms are less near the central
and top portion of the enclosure for non-uniform heating case. The
greater values of isotherms are highly dense near the center of the
bottom wall which may indicate a greater local heating rate com-
pared to uniform heating case (see Figs. 8–10).

Figs. 9 and 10 show stream function and temperature contours
for Pr = 0.015 and Pr = 1000, respectively with Ra ¼ 105 and
Da ¼ 10�3. It is interesting to observe that the maximum value of
stream function is 3 for Pr = 0.7 whereas that is 2.5 for Pr = 0.015
and 3.2 for Pr ¼ 1000. Also, it is observed that the temperature
contours with h 6 0:3 are pushed towards the vertical wall for
Pr ¼ 0:015 (Fig. 9) whereas contours with h 6 0:4 have been
pushed for Pr ¼ 0:7 and Pr ¼ 1000 (Figs. 8 and 10).

4.4. Heat transfer rates: Local Nusselt numbers

Fig. 11(a) and (b) display the effect of Da (10�5–10�3) and
Pr ¼ 0:7 on the local Nusselt numbers at the bottom and side walls
(Nub; Nus). For the uniform heating of the bottom wall (Fig. 11(a)),
due to the presence of discontinuity in the temperature boundary
condition at the edges of bottom wall, the heat transfer rate is very
high at these corners and this is common to all Darcy and Prandtl
numbers. In addition, the heat transfer rate reduces towards the
middle of the bottom wall as the isotherms are well dispersed at
the middle. In contrast, for Da ¼ 10�5 and Da ¼ 10�4 with non-uni-
formly heated bottom wall, Nub increases from zero at both the
edges of the bottom wall towards the center where a maximum va-
lue is observed. The local maxima of Nub for non-uniform heating is
due to the fact that higher degree of compression of isotherms oc-
cur near the central regime. On the other hand, the temperature
contours diverge from the corner points towards the central verti-
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Fig. 8. Contour plots for non-uniform bottom heating, hðX; 0Þ ¼ sinðpXÞ, with Pr = 0.7, Ra
positive signs of stream function, respectively.
cal line for uniform heating case and therefore the local Nusselt
number monotonically decreases from the corner point to the cen-
ter. Further, for Da ¼ 10�3, the non-uniform heating produces a
sinusoidal type of local heat transfer rate with its minimum value
at the edges as well as at the center of the bottom wall. Two max-
ima in Nub is obtained as the isotherms are compressed at X = 0.3
and 0.7. This is due to fact that the higher intensity of circulations
compresses the isotherms at X ¼ 0:3 and X ¼ 0:7. It is also noticed
that for all regimes of Darcy and Rayleigh numbers, the heat trans-
fer rate at the central regime for the non-uniform heating is larger
than that for uniform heating.

Fig. 11(b) illustrates the heat transfer rate at the side wall. At
the bottom corner points, Nus is large due to discontinuity in
temperature for uniform heating case whereas due to dispersed
temperature contours or less thermal gradient, the heat transfer
rate for non-uniform case is lesser than that for uniform heating
case irrespective of Pr and Da. The local Nusselt number (Nus)
decreases with distance at the side wall for Da ¼ 10�5 and
Da ¼ 10�4 with Pr ¼ 0:7 for both uniform and non-uniform heat-
ing cases. On the other hand, for Da = 10�3, the heat transfer rate
initially decreases and later increases with distance. This is due
to compressed isotherms towards the side walls away from the
corner points at the bottom for Da ¼ 10�3. Therefore, the heat
transfer rates are enhanced at the regimes away from bottom
corner points. It is observed that at higher Rayleigh number,
the significant circulation results in dense contours at the top
portion of the side walls and these dense isotherms are in con-
trast with the conduction dominant cases. The degree of com-
pression of isotherms at the top portion is less for non-uniform
heating case.

4.5. Overall heat transfer rate and average Nusselt numbers

The overall effects upon the heat transfer rates are displayed in
Fig. 12(a–d), where the distributions of the average Nusselt num-
ber of bottom and side walls, are plotted vs. the logarithmic Ray-
leigh number. The average Nusselt numbers were obtained using
Eqs. (14)–(16) where the integral is evaluated using Simpson’s 1/
3 rule. Note that, Figs. 12(a) and (b) (cases a and b) illustrates uni-
form heating cases and Fig. 12(c) and (d) (cases c and d) illustrate
non-uniform heating cases. The average Nusselt numbers for bot-
tom walls remain constant upto Ra = 8�103 with uniform heating
case and upto Ra = 5� 103 with non-uniform heating case when
Pr ¼ 0:7 and Da ¼ 10�3. It may be noted that, the influence of the
Rayleigh number on the Nusselt number becomes significant at
higher Darcy number. It may also be noted that, average Nusselt
number (Nus, Nub) remain invariant of Ra for Da ¼ 10�5 irrespec-
tive of Pr. This further confirms that the heat transfer is conduction
dominant for low Darcy numbers. The average Nusselt numbers at
the bottom and side walls were thermally balanced within 1% er-
ror. The values of average Nusselt number are more in the case
of uniform heating compared to non-uniform heating as seen in
the Fig. 12(a–d). The following relationship has been obtained for
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uniform and non-uniform heating of bottom wall between average
Nusselt number and three parameters (Rayleigh number, Ra, Pra-
ndtl number, Pr and Darcy number, Da):
Cases a and b: uniform heating

Nub ¼2:308Nus

¼4:0770Pr0:0102Da0:0141Ra0:0144; Ra P 8� 103:

Cases c and d: non-uniform heating

Nub ¼2:308Nus

¼1:6543Pr0:0194Da0:0415Ra0:05; Ra P 5� 103:
5. Conclusion

In the current investigation, the influence of uniform and non-
uniform heating of the bottom wall and heat transfer characteris-
tics due to natural convection within a trapezoidal enclosure filled
with porous medium has been studied in detail. The penalty finite
element method helps to obtain smooth solutions in terms of
stream function and isotherm contours for uniform and non-uni-
form heating of the bottom wall with wide ranges of Pr, Ra and
Da. The heat transfer rate is very high at the edges of the bottom
wall and decreases to a minimum value at the center especially
at the bottom wall due to uniform heating which contrast the low-
er heat transfer rate at the edges due to non-uniform heating. We
observed that the conduction dominant heat transfer modes for
Ra 6 8� 103 during uniform heating of bottom wall whereas the
conduction dominant heat transfer is observed for Ra 6 5� 103

for non-uniform heating in presence of high Darcy numbers
(Da ¼ 10�3).

At the onset of convection dominant mode, the temperature
contour lines get compressed towards the side walls and they tend
to get deformed towards the upward direction. For Da ¼ 10�3,
thermal boundary layer is developed near the bottom and side
walls and the central regime near the top surface has least temper-
ature gradient for both uniform and non-uniform heating cases. In
the case of uniform heating of the bottom wall the heat transfer
rate attains minimum at the center of the bottom wall and in-
creases towards the edges. In contrast, for the case of non-uniform
heating, with Da 6 10�4, the heat transfer increases from the left of
the bottom wall and attains maximum at the center and then
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decreases whereas for Da ¼ 10�3 a sinusoidal type of heat transfer
is obtained. The non-uniform heating exhibits greater heat transfer
rates at the center of the bottom wall than the uniform heating
case for all parameter regimes. The local Nusselt number at the
side wall is found to be decreased with distance for conduction
dominant heat transfer whereas Nus is found to be increased due
to highly dense contour lines near the top portion of the side wall
for both uniform and non-uniform heating cases. The average Nus-
selt numbers illustrate overall lower heat transfer rates for non-
uniform heating cases. Finally correlation between average Nusselt
number, Rayleigh number, Prandtl number and Darcy number
have been obtained for uniform and non-uniform heating cases.
Appendix A

The name ‘‘isoparametric” derives from the fact that the same
parametric function describing the geometry may be used for
interpolating spatial variable within an element. Fig. 2 shows a
trapezoidal domain which is mapped to a square domain. The
transformation between (x, y) and (n, g) coordinates can be defined
by X ¼

P9
k¼1Ukðn; gÞxk and Y ¼

P9
k¼1Ukðn; gÞyk where (xk, yk) are

the X, Y coordinates of the k nodal points as seen in Fig. 2a, b
and Ukðn; gÞ is the basis function. The nine basis functions are:
U1 ¼ ð1� 3nþ 2n2Þð1� 3gþ 2g2Þ
U2 ¼ ð1� 3nþ 2n2Þð4g� 4g2Þ
U3 ¼ ð1� 3nþ 2n2Þð�gþ 2g2Þ
U4 ¼ ð4n� 4n2Þð1� 3gþ 2g2Þ
U5 ¼ ð4n� 4n2Þð4g� 4g2Þ
U6 ¼ ð4n� 4n2Þð�gþ 2g2Þ
U7 ¼ ð�nþ 2n2Þð1� 3gþ 2g2Þ
U8 ¼ ð�nþ 2n2Þð4g� 4g2Þ
U9 ¼ ð�nþ 2n2Þð�gþ 2g2Þ

The above basis functions are used for mapping the trapezoidal
domain into square domain and the evaluation of integrals of
residuals.
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